Send to

Choose Destination
See comment in PubMed Commons below
J Contam Hydrol. 2001 Jul;50(1-2):99-120.

Factors affecting mass transfer limited biodegradation in saturated porous media.

Author information

Swiss Federal Institute for Environmental Science and Technology (EAWAG), CH-8600 Dübendorf, Switzerland.


Microbial degradation rates in the subsurface are not only limited by the physiological capacity of the organisms, but also by inefficient supply of nutrients to the microbes. Although mass transfer limitation of biodegradation in the subsurface has been postulated for years, experimental evidence is still scarce. In the column experiments described here, diffusive transport of 4-nitroanisole from the bulk solution to cells of Rhodococcus opacus strain AS2 immobilized on glass beads or sand appeared to be responsible for the slow transformation rates observed. Assuming steady state, we applied a coupled transformation/transport equation to these data (Best equation) and apparent bead-related mass transfer coefficients were found to increase in proportion to the surface area covered with bacteria. This implies that mass transfer coefficients for individual cells remained constant. In an idealized oligotrophic environment where cells are only loosely clustered and do not shield each other, we would therefore expect biodegradation rates to be independent from the longitudinal distribution of the total biomass along a given flow path. Moreover, apparent mass transfer coefficients increased with the grain size of the column fillings, but did not change upon varying the flow rate. With a limiting external transport step, overall transformation fluxes do not become saturated at concentrations as low as predicted for Michaelis-Menten-type kinetics. Mass transfer limitation thus offers a justification for the common assumption that biodegradation rates in the subsurface follow first order kinetics in a wide concentration range.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center