Send to

Choose Destination
Mol Med. 2001 Jun;7(6):393-400.

Factors secreted by human neuroblastoma mediated doxorubicin resistance by activating STAT3 and inhibiting apoptosis.

Author information

Children's Memorial Institute for Education and Research, Cancer Biology and Chemotherapy Program, Chicago, Illinois 60614, USA.



The transcription factor Stat3 has been reported to play a key role in protecting cells against apoptosis by up-regulating expression of the anti-apoptotic gene BCl-xL. This investigation analyzes the relationship between the development of resistance to doxorubicin-mediated apoptosis in neuroblastoma cells (SKN-SH) and activation of the Stat3 signaling pathway.


A drug-resistant cell line (SKN-SH/Dox6) was generated by continuous exposure to incremental concentrations of doxorubicin. Specific antibodies were utilized for Western blots and confocal microscopy to determine the nuclear localization of activated Stat3.


Doxorubicin-mediated DNA fragmentation was inhibited and caspase-3 activity decreased in SKN-SH/Dox6 cells. Up-regulation of Stat3 phosphorylation and Bcl-xL expression, increased nuclear translocation of phospho-Stat3, and binding to DNA occurred only in resistant SKN-SH/Dox6 cells. The expression of Bcl-xL was inhibited by AG490, an inhibitor of the JAK/Stat3 signaling pathway, suggesting that the regulation of Bcl-xL and Stat3 involved a common mechanism. Activation of Stat3 in SKN-SH/Dox6 cells was contingent upon stimulation evoked by ligands secreted by the drug-resistant cells. Evidence to support this hypothesis was provided by experiments in which doxorubicin-sensitive SKN-SH cells were preincubated with conditioned media obtained from doxorubicin-resistant SKN-SH/Dox6 cells. This treatment increased Stat3 activation. It also rendered SKN-SH cells resistant to doxorubicin as demonstrated by a sharp decrease in doxorubicin-induced DNA degradation and cytotoxic potency.


These findings suggest that the resistance of SKN-SH/Dox6 cells to doxorubicin may be mediated by anti-apoptotic factor(s) that are synthesized and secreted by tumor cells in response to cytotoxic agents.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for PubMed Central
Loading ...
Support Center