Send to

Choose Destination
See comment in PubMed Commons below
Genes Cells. 2001 Jul;6(7):641-52.

Terminal deoxynucleotidyltransferase directly interacts with a novel nuclear protein that is homologous to p65.

Author information

  • 1Faculty of Science & Technology, Department of Applied Biological Science, Science University of Tokyo, Noda, Chiba 278-8510, Japan.



Terminal deoxynucleotidyltransferase (TdT) is a DNA polymerase that enhances Ig and TcR gene diversity in the N region in B- and T-cells. TdT is found as a member of a large protein complex in the lysate of the thymocytes. To elucidate the molecular mechanism of the synthesis of the N region, we first attempted to isolate the genes with products that are interacting directly with TdT.


Using a yeast two-hybrid system, we isolated a cDNA clone encoding a novel nuclear protein that interacts with TdT. This protein was designated as TdT interacting factor 1 (TdIF1). TdIF1 has a high degree of homology to the transcription factor p65, which belongs to the nuclear receptor superfamily. TdIF1 contains HMG-I and HMG-Y DNA binding domains (AT-hooks) and can bind to single- and double-stranded DNA. TdT and TdIF1 were co-eluted at position 232 kDa by gel filtration of MOLT4 lysate. TdIF1 can enhance TdT activity fourfold in vitro assay system using oligo(dT)16 as primers.


TdIF1 binds directly to TdT, both in vitro and in vivo. TdIF1 and TdT exist as the members of a 232 kDa protein complex. TdIF1 can enhance TdT activity maximum fourfold in vitro assay system, suggesting that it positively regulates the synthesis of the N region during V(D)J recombination in the Ig and TcR genes.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley
    Loading ...
    Support Center