Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2001 Oct 5;276(40):37415-25. Epub 2001 Jul 25.

Metabolism of sucrose and its five linkage-isomeric alpha-D-glucosyl-D-fructoses by Klebsiella pneumoniae. Participation and properties of sucrose-6-phosphate hydrolase and phospho-alpha-glucosidase.

Author information

  • 1Microbial Biochemistry and Genetics Unit, Oral Infection and Immunity Branch, NIDCR, National Institutes of Health, Bethesda, Maryland 20892, USA.


Klebsiella pneumoniae is presently unique among bacterial species in its ability to metabolize not only sucrose but also its five linkage-isomeric alpha-d-glucosyl-d-fructoses: trehalulose, turanose, maltulose, leucrose, and palatinose. Growth on the isomeric compounds induced a protein of molecular mass approximately 50 kDa that was not present in sucrose-grown cells and which we have identified as an NAD(+) and metal ion-dependent 6-phospho-alpha-glucosidase (AglB). The aglB gene has been cloned and sequenced, and AglB (M(r) = 49,256) has been purified from a high expression system using the chromogenic p-nitrophenyl alpha-glucopyranoside 6-phosphate as substrate. Phospho-alpha-glucosidase catalyzed the hydrolysis of a wide variety of 6-phospho-alpha-glucosides including maltose-6'-phosphate, maltitol-6-phosphate, isomaltose-6'-phosphate, and all five 6'-phosphorylated isomers of sucrose (K(m) approximately 1-5 mm) yet did not hydrolyze sucrose-6-phosphate. By contrast, purified sucrose-6-phosphate hydrolase (M(r) approximately 53,000) hydrolyzed only sucrose-6-phosphate (K(m) approximately 80 microm). Differences in molecular shape and lipophilicity potential between sucrose and its isomers may be important determinants for substrate discrimination by the two phosphoglucosyl hydrolases. Phospho-alpha-glucosidase and sucrose-6-phosphate hydrolase exhibit no significant homology, and by sequence-based alignment, the two enzymes are assigned to Families 4 and 32, respectively, of the glycosyl hydrolase superfamily. The phospho-alpha-glucosidase gene (aglB) lies adjacent to a second gene (aglA), which encodes an EII(CB) component of the phosphoenolpyruvate-dependent sugar:phosphotransferase system. We suggest that the products of the two genes facilitate the phosphorylative translocation and subsequent hydrolysis of the five alpha-d-glucosyl-d-fructoses by K. pneumoniae.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center