Send to

Choose Destination
See comment in PubMed Commons below
J Mol Biol. 2001 Aug 3;311(1):75-86.

Structure-based analysis of protein-RNA interactions using the program ENTANGLE.

Author information

Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77005, USA.


Until recently, drawing general conclusions about RNA recognition by proteins has been hindered by the paucity of high-resolution structures. We have analyzed 45 PDB entries of protein-RNA complexes to explore the underlying chemical principles governing both specific and non-sequence specific binding. To facilitate the analysis, we have constructed a database of interactions using ENTANGLE, a JAVA-based program that uses available structural models in their PDB format and searches for appropriate hydrogen bonding, stacking, electrostatic, hydrophobic and van der Waals interactions. The resulting database of interactions reveals correlations that suggest the basis for the discrimination of RNA from DNA and for base-specific recognition. The data illustrate both major and minor interaction strategies employed by families of proteins such as tRNA synthetases, ribosomal proteins, or RNA recognition motifs with their RNA targets. Perhaps most surprisingly, specific RNA recognition appears to be mediated largely by interactions of amide and carbonyl groups in the protein backbone with the edge of the RNA base. In cases where a base accepts a proton, the dominant amino acid donor is arginine, whereas in cases where the base donates a proton, the predominant acceptor is the backbone carbonyl group, not a side-chain group. This is in marked contrast to DNA-protein interactions, which are governed predominantly by amino acid side-chain interactions with functional groups that are presented in the accessible major groove. RNA recognition often proceeds through loops, bulges, kinks and other irregular structures that permit use of all the RNA functional groups and this is seen throughout the protein-RNA interaction database.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center