Format

Send to

Choose Destination
Planta. 2001 Jun;213(2):265-71.

Glutamine and alpha-ketoglutarate are metabolite signals involved in nitrate reductase gene transcription in untransformed and transformed tobacco plants deficient in ferredoxin-glutamine-alpha-ketoglutarate aminotransferase.

Author information

1
Unité de Nutrition Azotée des Plantes, INRA de Versailles, France. ferrario@versailles.inra.fr

Abstract

Transformed tobacco (Nicotiana tabacum L.) plants with varying activities of the key enzyme of ammonia assimilation, ferredoxin-glutamine-alpha-ketoglutarate aminotransferase (Fd-GOGAT; EC 1.4.7.1), were used to examine the roles of ammonium, glutamine (Gln) and alpha-ketoglutarate (alpha-KG) in the regulation of nitrate reductase (NR; EC 1.6.6.1) transcript abundance. In wild-type leaf discs, NR mRNA abundance was increased following feeding with NO3-, sucrose and alpha-KG and decreased by feeding Gln. In air, leaves with decreased GOGAT accumulated Gln and alpha-KG simultaneously; this was accompanied by increased NR transcripts. The inhibition of NR transcription by Gln observed in leaf-disc experiments was therefore not observed in the low-Fd-GOGAT plants that accumulate Gln in vivo. The results suggest that the negative effect of Gln on NR transcript abundance was offset by high alpha-KG and that the relative amounts of alpha-KG and Gln are more important in controlling NR gene transcription than the concentration of either metabolite alone.

PMID:
11469592
DOI:
10.1007/s004250000504
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Springer
Loading ...
Support Center