Send to

Choose Destination
See comment in PubMed Commons below
Proc Biol Sci. 2000 Aug 22;267(1453):1627-32.

Moth hearing in response to bat echolocation calls manipulated independently in time and frequency.

Author information

School of Biological Sciences, University of Bristol, UK.


We measured the auditory responses of the noctuid moth Noctua pronuba to bat echolocation calls which were manipulated independently in time and frequency. Such manipulations are important in understanding how insect hearing influences the evolution of echolocation call characteristics. We manipulated the calls of three bat species (Rhinolophus hipposideros, Myotis nattereri and Pipistrellus pipistrellus) that use different echolocation call features by doubling their duration or reducing their frequency, and measured the auditory thresholds from the A1 cells of the moths. Knowing the auditory responses of the moth we tested three predictions. (i) The ranking of the audibility of unmanipulated calls to the moths should be predictable from their temporal and/or frequency structure. This was supported. (ii) Doubling the duration of the calls should increase their audibility by ca. 3 dB for all species. Their audibility did indeed increase by 2.1-3.5 dB. (iii) Reducing the frequency of the calls would increase their audibility for all species. Reducing the frequency had small effects for the two bat species which used short duration (2.7-3.6 ms) calls. However, the relatively long-duration (50 ms), largely constant-frequency calls of R. hipposideros increased in audibility by 21.6 dB when their frequency was halved. Time and frequency changes influence the audibility of calls to tympanate moths in different ways according to call design. Large changes in frequency and time had relatively small changes on the audibility of calls for short, largely broadband calls. Channelling energy into the second harmonic of the call substantially decreased the audibility of calls for bats which use long-duration, constant-frequency components in echolocation calls. We discuss our findings in the contexts of the evolution of both bat echolocation call design and the potential responses of insects which hear ultrasound.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center