Format

Send to

Choose Destination
See comment in PubMed Commons below
J Neurosci. 2001 Aug 1;21(15):5660-9.

Neuregulins increase alpha7 nicotinic acetylcholine receptors and enhance excitatory synaptic transmission in GABAergic interneurons of the hippocampus.

Author information

1
Section on Developmental Neurobiology, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, USA. liuy@ninds.nih.gov

Abstract

Neuregulins are highly expressed in the CNS, especially in cholinergic neurons. We have examined the effect of neuregulin on nicotinic acetylcholine receptors (nAChRs) in neurons dissociated from the rat hippocampus. Rapid application of acetylcholine (ACh) induced a rapidly rising and decaying inward current in some of the neurons, which was completely blocked by methyllycaconitine, a specific antagonist of the alpha7 subunit of the nAChR. When the cells were treated with 5 nm neuregulin (NRG1-beta1) for 2-4 d, a twofold increase in amplitude of the peak ACh-induced current was observed, and there was a comparable increase in (125)I-alpha-bungarotoxin binding. The fast ACh-induced peak current was prominent in large neurons that also contained GABA immunoreactivity. These presumptive GABAergic neurons constituted approximately 10% of neurons present in 7- to 9-d-old cultures. In addition to the large inward peak current, ACh also evoked transmitter release from presynaptic nerve terminals. Pharmacologic experiments indicated that the shower of PSCs was mediated by glutamate, with a small minority caused by the action of GABA. Chronic exposure to NRG1-beta1 increased the amplitude of ACh-evoked PSCs but not the minimum "quantal" PSC. NRG1-beta1 also increased the percentage of neurons that exhibited ACh-evoked PSCs.

PMID:
11466437
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center