Format

Send to

Choose Destination
Mol Endocrinol. 2001 Aug;15(8):1381-95.

Multiple promoters exist in the human GR gene, one of which is activated by glucocorticoids.

Author information

1
Department of Biochemistry and Molecular Biology and the Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, USA.

Abstract

A new human GR gene sequence (hGR 1Ap/e), which is distinct from the previously identified human GR promoter and coding sequences, has been isolated and characterized. The hGR 1Ap/e sequence is approximately 31 kbp upstream of the human GR coding sequence. This sequence (2,056 bp) contains a novel promoter (the hGR 1A promoter; 1,075 bp) and untranslated exon sequence (hGR exon 1A sequence; 981 bp). Alternative splicing produces three different hGR 1A-containing transcripts, 1A1, 1A2, and 1A3. GR transcripts containing exon 1A1, 1A2, 1B, and 1C are expressed at various levels in many cancer cell lines, while the exon 1A3-containing GR transcript is expressed most abundantly in blood cell cancer cell lines. Glucocorticoid hormone treatment causes an up-regulation of exon 1A3-containing GR transcripts in CEM-C7 T-lymphoblast cells and a down-regulation of exon 1A3-containing transcripts in IM-9 B-lymphoma cells. Deoxyribonuclease I footprinting using CEM-C7 cell nuclear extract reveals four footprints in the promoter region and two intraexonic footprints. Much of the basal promoter-activating function is found in the +41/+269 sequence, which contains two deoxyribonuclease I footprints (FP5 and FP6). When this sequence is cloned into the pXP-1 luciferase reporter gene, hormone treatment causes a significant increase in luciferase activity in Jurkat T cells that are cotransfected with a GR expression vector. FP5 is an interferon regulatory factor-binding element, and it contributes significantly to basal transcription rate, but it is not activated by steroid. FP6 resembles a glucocorticoid response element and can bind GRbeta. This novel hGR 1Ap/e sequence may have future applications for the diagnosis, prognosis, and treatment of T-cell leukemia and lymphoma.

PMID:
11463861
DOI:
10.1210/mend.15.8.0696
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Silverchair Information Systems
Loading ...
Support Center