Format

Send to

Choose Destination
See comment in PubMed Commons below
Free Radic Biol Med. 2001 Aug 1;31(3):292-303.

Oxidation of active center cysteine of bovine 1-Cys peroxiredoxin to the cysteine sulfenic acid form by peroxide and peroxynitrite.

Author information

  • 1Department of Ophthalmology, Wayne State University, School of Medicine, 4717 St. Antoine, Detroit, MI, USA.

Abstract

Peroxiredoxins are antioxidant enzymes whose peroxidase activity depends on a redox-sensitive cysteine residue at the active center. In this study we investigated properties of the active center cysteine of bovine 1-Cys peroxiredoxin using a recombinant protein (BRPrx). The only cysteine residue of the BRPrx molecule was oxidized rapidly by an equimolar peroxide or peroxynitrite to the cysteine sulfenic acid. Approximate rates of oxidation of BRPrx by different peroxides were estimated using selenium glutathione peroxidase as a competitor. Oxidation of the active center cysteine of BRPrx by H2O2 proceeded only several times slowly than that of the selenocysteine of glutathione peroxidase. The rate of oxidation varied depending on peroxides tested, with H2O2 being about 7 and 80 times faster than tert-butyl hydroperoxide and cumene hydroperoxide, respectively. Peroxynitrite oxidized BRPrx slower than H2O2 but faster than tert-butyl hydroperoxide. Further oxidation of the cysteine sulfenic acid of BRPrx to higher oxidation states proceeded slowly. Oxidized BRPrx was reduced by dithiothreitol, dihydrolipoic acid, and hydrogen sulfide, and demonstrated peroxidase activity (about 30 nmol/mg/min) with these reductants as electron donors. beta-Mercaptoethanol formed a mixed disulfide and did not support peroxidase activity. Oxidized BRPrx did not react with glutathione, cysteine, homocysteine, N-acetyl-cysteine, and mercaptosuccinic acid.

PMID:
11461766
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center