Send to

Choose Destination
See comment in PubMed Commons below
Respir Physiol. 2001 Aug;127(1):53-60.

Mild hypoxia causes severe pulmonary hypertension in fawn-hooded but not in Tester Moriyama rats.

Author information

Department of Respiratory Medicine, Juntendo University, School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.


The purpose of this study was to test whether the Tester Moriyama rat (TMR), a strain that has a serotonin platelet storage-pool deficiency similar to that of the fawn-hooded rat (FHR), develops severe pulmonary hypertension (PH) upon exposure to mild hypoxia. We compared hemodynamic parameters in catheterized 10-week-old FHR, TMR, and control Wistar rats that had been raised from birth to 10 weeks of age under normoxia (PI(O(2)) approximately 150 mmHg) or mild hypobaric hypoxia (PI(O(2)) approximately 120 mmHg). Mean pulmonary artery pressure and right ventricle to left ventricle plus septum weight ratio were much higher in the mildly hypoxic FHR compared with the normoxic FHR. These parameters were only increased slightly by exposure to mild hypoxia in the TMR and Wistar rats. Mild hypoxia did not affect mean systemic artery pressure in any of the rat strains. Exposure of FHR to mild hypoxia from 4 to 10 weeks of age did not lead to development of PH. Endothelin-1 (ET-1) mRNA and peptide levels were increased in the hypertensive lungs of mildly hypoxic FHR compared with the normotensive lungs of normoxic FHR, and of normoxic and mildly hypoxic TMR and Wistar rats. These results suggest that mild hypoxia causes severe PH and upregulation of lung ET-1 expression in neonatal FHR but not in neonatal TMR, and that the period from birth to 4 weeks of age is critical for the development of the severe PH in the FHR. A serotonin PSPD does not predispose rats to hypoxia-induced PH.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center