Send to

Choose Destination
See comment in PubMed Commons below
J Opt Soc Am A Opt Image Sci Vis. 2001 Jul;18(7):1588-611.

Gaussian beam and pulsed-beam dynamics: complex-source and complex-spectrum formulations within and beyond paraxial asymptotics.

Author information

Department of Electrical Engineering-Physical Electronics, Tel Aviv University, Israel.


Paraxial Gaussian beams (GB's) are collimated wave objects that have found wide application in optical system analysis and design. A GB propagates in physical space according to well-established quasi-geometric-optical rules that can accommodate weakly inhomogeneous media as well as reflection from and transmission through curved interfaces and thin-lens configurations. We examine the GB concept from a broad perspective in the frequency domain (FD) and the short-pulse time domain (TD) and within as well as arbitrarily beyond the paraxial constraint. For the formal analysis, which is followed by physics-matched high-frequency asymptotics, we use a (space-time)-(wavenumber-frequency) phase-space format to discuss the exact complex-source-point method and the associated asymptotic beam tracking by means of complex rays, the TD pulsed-beam (PB) ultrawideband wave-packet counterpart of the FD GB, GB's and PB's as basis functions for representing arbitrary fields, GB and PB diffraction, and FD-TD radiation from extended continuous aperture distributions in which the GB and the PB bases, installed through windowed transforms, yield numerically compact physics-matched a priori localization in the plane-wave-based nonwindowed spectral representations.

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Optical Society of America
    Loading ...
    Support Center