Send to

Choose Destination
Novartis Found Symp. 2001;238:5-19; discussion 19-25.

Gastroenteritis viruses: an overview.

Author information

Viral Gastroenteritis Section, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30333, USA.


Acute gastroenteritis is among the most common illnesses of humankind, and its associated morbidity and mortality are greatest among those at the extremes of age, children and the elderly. In developing countries, gastroenteritis is a common cause of death in children < 5 years that can be linked to a wide variety of pathogens. In developed countries, while deaths from diarrhoea are less common, much illness leads to hospitalization or doctor visits. Much of the gastroenteritis in children is caused by viruses belonging to four distinct families--rotaviruses, caliciviruses, astroviruses and adenoviruses. Other viruses, such as the toroviruses, picobirnaviruses, picornavirus (the Aichi virus), and enterovirus 22, may play a role as well. Viral gastroenteritis occurs with two epidemiologic patterns, diarrhoea that is endemic in children and outbreaks that affect people of all ages. Viral diarrhoea in children is caused by group A rotaviruses, enteric adenoviruses, astroviruses and the caliciviruses; the illness affects all children worldwide in the first few years of life regardless of their level of hygiene, quality of water, food or sanitation, or type of behaviour. For all but perhaps the caliciviruses, these infections provide immunity from severe disease upon reinfection. Epidemic viral diarrhoea is caused primarily by the Norwalk-like virus genus of the caliciviruses. These viruses affect people of all ages, are often transmitted by faecally contaminated food or water, and are therefore subject to control by public health measures. The tremendous antigenic diversity of caliciviruses and short-lived immunity to infection permit repeated episodes throughout life. In the past decade, the molecular characterization of many of these gastroenteritis viruses has led to advances both in our understanding of the pathogens themselves and in development of a new generation of diagnostics. Application of these more sensitive methods to detect and characterize individual agents is just beginning, but has already opened up new avenues to reassess their disease burden, examine their molecular epidemiology, and consider new directions for their prevention and control through vaccination, improvements in food and water quality and sanitary practices.

[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center