Send to

Choose Destination
See comment in PubMed Commons below
J Bacteriol. 2001 Aug;183(15):4499-508.

Novel genes of the sox gene cluster, mutagenesis of the flavoprotein SoxF, and evidence for a general sulfur-oxidizing system in Paracoccus pantotrophus GB17.

Author information

  • 1Lehrstuhl für Technische Mikrobiologie, Fachbereich Chemietechnik, Universität Dortmund, Emil-Figge-Strasse 66, D-44221 Dortmund, Germany.


The novel genes soxFGH were identified, completing the sox gene cluster of Paracoccus pantotrophus coding for enzymes involved in lithotrophic sulfur oxidation. The periplasmic SoxF, SoxG, and SoxH proteins were induced by thiosulfate and purified to homogeneity from the soluble fraction. soxF coded for a protein of 420 amino acids with a signal peptide containing a twin-arginine motif. SoxF was 37% identical to the flavoprotein FccB of flavocytochrome c sulfide dehydrogenase of Allochromatium vinosum. The mature SoxF (42,832 Da) contained 0.74 mol of flavin adenine dinucleotide per mol. soxG coded for a novel protein of 303 amino acids with a signal peptide containing a twin-arginine motif. The mature SoxG (29,657 Da) contained two zinc binding motifs and 0.90 atom of zinc per subunit of the homodimer. soxH coded for a periplasmic protein of 317 amino acids with a double-arginine signal peptide. The mature SoxH (32,317 Da) contained two metal binding motifs and 0.29 atom of zinc and 0.20 atom of copper per subunit of the homodimer. SoxXA, SoxYZ, SoxB, and SoxCD (C. G. Friedrich, A. Quentmeier, F. Bardischewsky, D. Rother, R. Kraft, S. Kostka, and H. Prinz, J. Bacteriol. 182:4476-4487, 2000) reconstitute a system able to perform thiosulfate-, sulfite-, sulfur-, and hydrogen sulfide-dependent cytochrome c reduction, and this system is the first described for oxidizing different inorganic sulfur compounds. SoxF slightly inhibited the rate of hydrogen sulfide oxidation but not the rate of sulfite or thiosulfate oxidation. From use of a homogenote mutant with an in-frame deletion in soxF and complementation analysis, it was evident that the soxFGH gene products were not required for lithotrophic growth with thiosulfate.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center