Send to

Choose Destination
Mol Microbiol. 2001 Jun;40(6):1403-13.

Glycosylation with heptose residues mediated by the aah gene product is essential for adherence of the AIDA-I adhesin.

Author information

Institut für Infektiologie - Zentrum für Molekularbiologie der Entzündung (ZMBE), Universitätsklinikum Münster, Germany.


The diffuse adherence of Escherichia coli strain 2787 (O126:H27) is mediated by the autotransporter adhesin AIDA-I (adhesin-involved-in-diffuse-adherence) encoded by the plasmid-borne aidA gene. AIDA-I exhibits an aberrant mobility in denaturing gel electrophoresis. Deletion of the open reading frame (ORF) A immediately upstream of aidA restores the predicted mobility of AIDA-I, but the adhesin is no longer functional. This indicates that the mature AIDA-I adhesin is post-translationally modified and the modification is essential for adherence function. Labelling with digoxigenin hydrazide shows AIDA-I to be glycosylated. Using carbohydrate composition analysis, AIDA-I contains exclusively heptose residues (ratio heptose:AIDA-I approximately 19:1). The deduced amino acid sequence of the cytoplasmic open reading frame (ORF) A gene product shows homologies to heptosyltransferases. In addition, the modification was completely abolished in an ADP-glycero-manno-heptopyranose mutant. Our results provide direct evidence for glycosylation of the AIDA-I adhesin by heptoses with the ORF A gene product as a specific (mono)heptosyltransferase generating the functional mature AIDA-I adhesin. Consequently, the ORF A gene has been denoted 'aah' (autotransporter-adhesin-heptosyltransferase). Glycosylation by heptoses represents a novel protein modification in eubacteria.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center