Format

Send to

Choose Destination
J Appl Microbiol. 2001 Jul;91(1):110-7.

A repeatable laboratory method for testing the efficacy of biocides against toilet bowl biofilms.

Author information

1
Center for Biofilm Engineering, Department of Chemical Engineering, Montana State University, Bozeman, MT 59117, USA.

Abstract

AIMS:

The purpose of this study was to develop a laboratory biofilm growth reactor system that simulated the toilet bowl environment and which could be used for biocide efficacy testing.

METHODS AND RESULTS:

A microbial biofilm reactor system incorporating intermittent flow and nutrient provision was designed. The reactor system was open to the air and was inoculated with organisms collected from toilet bowl biofilms. Once per hour, reactors were supplied with a nutrient solution for a period of 5 min, then flushed and refilled with tap water or tap water amended with chlorine. Quantitative measures of the rate and extent of biofilm accumulation were defined. Biofilm accumulated in untreated reactors to cell densities of 108 cfu cm-2 after approximately 1 week. Biofilm accumulation was also observed in reactors in the continuous presence of several milligrams per litre of free chlorine. Repeatability standard deviations for the selected efficacy measures were low, indicating high repeatability between experiments. Log reduction values of viable cell numbers were within ranges observed with standard suspension and hard surface disinfection tests. Biofilm accumulated in laboratory reactors approximately seven times faster than it did in actual toilet bowls. The same ranking was achieved in tests between laboratory biofilms and field-grown biofilms with three of the four measures, using three different concentrations of chlorine.

CONCLUSION:

This reactor system has been shown to simulate, in a repeatable way, the accumulation of bacterial biofilm that occurs in toilet bowls. The results demonstrate that this system can provide repeatable assays of the efficacy of chlorine against those biofilms.

SIGNIFICANCE AND IMPACT OF THE STUDY:

The laboratory biofilm reactor system described herein can be used to evaluate potential antimicrobial and antifouling treatments for control of biofilm formation in toilet bowls.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center