Send to

Choose Destination
Genes Cells. 2001 Jun;6(6):531-44.

Identification and characterization of DAlk: a novel Drosophila melanogaster RTK which drives ERK activation in vivo.

Author information

Umeå Center for Molecular Pathogenesis, Building 6L, Umeå University, S-901 87, Sweden.



The mammalian receptor protein tyrosine kinase (RTK), Anaplastic Lymphoma Kinase (ALK), was first described as the product of the t(2;5) chromosomal translocation found in non-Hodgkin's lymphoma. While the mechanism of ALK activation in non-Hodgkin's lymphoma has been examined, to date, no in vivo role for this orphan insulin receptor family RTK has been described.


We describe here a novel Drosophila melanogaster RTK, DAlk, which we have mapped to band 53 on the right arm of the second chromosome. Full-length DAlk cDNA encodes a phosphoprotein of 200 kDa, which shares homology not only with mammalian ALK but also with the orphan RTK LTK. Analysis of both mammalian and Drosophila ALK reveals that the ALK family of RTKs contains a newly identified MAM domain within their extracellular domains. Like its mammalian counterpart, DAlk appears to be expressed in the developing CNS by in situ analysis. However, in addition to expression of DAlk in the Drosophila brain, careful analysis reveals an additional early role for DAlk in the developing visceral mesoderm where its expression is coincident with activated ERK.


In this paper we describe a Drosophila melanogaster Alk RTK which is expressed in the developing embryonic mesoderm and CNS. Our data provide evidence for the existence of a DAlk RTK pathway in Drosophila. We show that ERK participates in this pathway, and that it is activated by DAlk in vivo. Expression patterns of dALK, together with activated ERK, suggest that DAlk fulfils the criteria of the missing RTK pathway, leading to ERK activation in the developing visceral mesoderm.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Wiley Icon for PubMed Central
Loading ...
Support Center