Format

Send to

Choose Destination
See comment in PubMed Commons below
J Immunol. 2001 Jul 15;167(2):715-23.

Enforced expression of GATA-3 during T cell development inhibits maturation of CD8 single-positive cells and induces thymic lymphoma in transgenic mice.

Author information

1
Department of Immunology, Faculty of Medicine, Erasmus University Rotterdam, Dr. Molewaterplein 50, 3000 DR Rotterdam, The Netherlands.

Abstract

The zinc finger transcription factor GATA-3 is of critical importance for early T cell development and commitment of Th2 cells. To study the role of GATA-3 in early T cell development, we analyzed and modified GATA-3 expression in vivo. In mice carrying a targeted insertion of a lacZ reporter on one allele, we found that GATA-3 transcription in CD4(+)CD8(+) double-positive thymocytes correlated with the onset of positive selection events, i.e., TCRalphabeta up-regulation and CD69 expression. LacZ expression remained high ( approximately 80% of cells) during maturation of CD4 single-positive (SP) cells in the thymus, but in developing CD8 SP cells the fraction of lacZ-expressing cells decreased to <20%. We modified this pattern by enforced GATA-3 expression driven by the CD2 locus control region, which provides transcription of GATA-3 throughout T cell development. In two independent CD2-GATA3-transgenic lines, approximately 50% of the mice developed thymic lymphoblastoid tumors that were CD4(+)CD8(+/low) and mostly CD3(+). In tumor-free CD2-GATA3-transgenic mice, the total numbers of CD8 SP cells in the thymus were within normal ranges, but their maturation was hampered, as indicated by increased apoptosis of CD8 SP cells and a selective deficiency of mature CD69(low)HSA(low) CD8 SP cells. In the spleen and lymph nodes, the numbers of CD8(+) T cells were significantly reduced. These findings indicate that GATA-3 supports development of the CD4 lineage and inhibits maturation of CD8 SP cells in the thymus.

PMID:
11441075
[Indexed for MEDLINE]
Free full text

Publication type, MeSH terms, Substances

Publication type

MeSH terms

Substances

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center