Format

Send to

Choose Destination
See comment in PubMed Commons below
Cell. 2001 Jun 29;105(7):863-75.

Signals transduced by Ca(2+)/calcineurin and NFATc3/c4 pattern the developing vasculature.

Author information

1
Department of Developmental Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA.

Abstract

Vascular development requires an orderly exchange of signals between growing vessels and their supporting tissues, but little is known of the intracellular signaling pathways underlying this communication. We find that mice with disruptions of both NFATc4 and the related NFATc3 genes die around E11 with generalized defects in vessel assembly as well as excessive and disorganized growth of vessels into the neural tube and somites. Since calcineurin is thought to control nuclear localization of NFATc proteins, we introduced a mutation into the calcineurin B gene that prevents phosphatase activation by Ca(2+) signals. These CnB mutant mice exhibit vascular developmental abnormalities similar to the NFATc3/c4 null mice. We show that calcineurin function is transiently required between E7.5 and E8.5. Hence, early calcineurin/NFAT signaling initiates the later cross-talk between vessels and surrounding tissues that pattern the vasculature.

PMID:
11439183
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center