Send to

Choose Destination
Am J Physiol Lung Cell Mol Physiol. 2001 Aug;281(2):L418-26.

Interactions between CBP, NF-kappaB, and CREB in the lungs after hemorrhage and endotoxemia.

Author information

Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA.


The transcriptional regulatory factor nuclear factor (NF)-kappaB has a central role in modulating expression of proinflammatory mediators that are important in acute lung injury. In vitro studies have shown that competition between NF-kappaB and cAMP response element binding protein (CREB) for binding to the coactivator CREB-binding protein (CBP) is important in regulating transcriptional activity of these factors. In the present study, we examined in vivo interactions between CBP, CREB, and NF-kappaB in hemorrhage- or endotoxemia-induced acute lung injury. Association of CBP with CREB or the p65 subunit of NF-kappaB increased in the lungs after hemorrhage or endotoxemia. Inhibition of xanthine oxidase before hemorrhage, but not before endotoxemia, decreased p65-CBP interactions while increasing those between CREB and CBP. These alterations in CREB-CBP and p65-CBP interactions were functionally significant because xanthine oxidase inhibition before hemorrhage resulted in increased expression of the CREB-dependent gene c-Fos and decreased expression of macrophage inflammatory protein-2, a NF-kappaB-dependent gene. The present results show that the coactivator CBP has an important role in modulating transcription in vivo under clinically relevant pathophysiological conditions.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Atypon
Loading ...
Support Center