Format

Send to

Choose Destination
Acta Med Okayama. 2001 Jun;55(3):133-59.

Molecular virology of hepatitis C virus.

Author information

1
Department of Molecular Biology, Okayama University Graduate School of Medicine and Dentistry, Japan. nkato@md.okayama-u.ac.jp

Abstract

Hepatitis C virus (HCV), discovered in 1989, is the major causative agent of parenteral non-A, non-B hepatitis worldwide. Following the development of a method of diagnosing HCV infection, it became apparent that HCV frequently causes chronic hepatitis. Persistent infection with HCV is implicated in liver cirrhosis and hepatocellular carcinoma. Current worldwide estimations suggest that more than 170 million people have been infected with HCV, an enveloped positive single-stranded RNA (9.6-kilobases) virus belonging to the Flaviviridae. The HCV genome shows remarkable sequence variation, especially in the hypervariable region 1 of the E2 protein-encoding region, and globally, HCV appears to be distributed with more than 30 genotypes. Complicated "quasispecies" and frequent mutations of viral genomes have also emerged. The HCV genome encodes a large polyprotein precursor of about 3,000 amino acid residues, and this precursor protein is cleaved by the host and viral proteinases to generate at least 10 proteins in the following order: NH2-core-envelope (E1)-E2-p7-nonstructural protein 2 (NS2)-NS3-NS4A-NS4B-NS5A-NS5B-COOH. These viral proteins not only function in viral replication but also affect a variety of cellular functions. Although several explanations have been proposed, the mechanisms of HCV infection and replication in targeted cells, the mechanism of persistent viral infection, and the pathogenesis of hepatic diseases (hepatitis or hepatocellular carcinoma) are all poorly understood. A major reason why these mechanisms remain unclear is the lack of a good experimental HCV replication system. Although several classical trials using cultured cells have been reported, several new, more promising experimental strategies (generations of infectious cDNA clone, replicon, animal models, etc.) are currently being designed and tested, in order to resolve these problems. In addition, new therapies for chronic hepatitis have also been developed. The enormous body of information collected thus far in the field of HCV research is summarized below, and an overview of the current status of HCV molecular virology of HCV is provided.

PMID:
11434427
DOI:
10.18926/AMO/32025
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Okayama University Medical School
Loading ...
Support Center