Format

Send to

Choose Destination
J Exp Bot. 2001 May;52(358):1051-61.

Frequencies of plasmodesmata in Allium cepa L. roots: implications for solute transport pathways.

Author information

1
Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.

Abstract

Plasmodesmatal frequencies (PFs) were analysed in Allium cepa L. roots with a mature exodermis (100 mm from the tip). For all interfaces within the root, the numbers of plasmodesmata (PD) microm(-2) wall surface (Fw) were calculated from measurements of 60 walls on ultrathin sections. For tissues ranging from the epidermis up to the stelar parenchyma, the frequencies were also expressed as total PD numbers mm(-1) root length (Fn), which is most instructive for considering the radial transport of ions and photosynthates (because the tissues were arranged in concentric cylinders). The Fn values were constantly high at the interfaces of exodermis-central cortex, central cortex-endodermis and endodermis-pericycle (4.05x10(5), 5.13x10(5), and 5.64x10(5), respectively). If the plasmodesmata are functional, a considerable symplastic transport pathway exists between the exodermis and pericycle. Two interfaces had especially low PFs: epidermis-exodermis (Fn=8.96x10(4)) and pericycle-stelar parenchyma (Fn=6.44x10(4)). This suggests that there is significant membrane transport across the interface of epidermis-exodermis (through short cells) and direct transfer of ions from pericycle to protoxylem vessels. In the phloem, the highest PF was detected at the metaphloem sieve element-companion cell interface (Fw=0.42), and all other interfaces had much lower PFs (around 0.10). In the pericycle, the radial walls had a high PF (Fw=0.75), a feature that could permit lateral circulation of solutes, thus facilitating ion (inward) and photosynthate (outward) delivery.

PMID:
11432921
[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center