Send to

Choose Destination
Phytochemistry. 2001 Aug;57(7):1167-76.

Repression of O-methyltransferase genes in transgenic tobacco affects lignin synthesis and plant growth.

Author information

Institut de Biologie Moléculaire des Plantes du Centre National de la Recherche Scientifique, Université Louis Pasteur, 12, rue du Général Zimmer, 67084 Strasbourg cedex, France.


Among the different enzymatic steps leading to lignin biosynthesis, two methylation reactions introduce the methyl groups borne by guaiacyl (G) and syringyl (S) units. Tobacco possesses a complex system of methylation comprising three classes of CCoAOMTs (caffeoyl-CoA-O-methyltransferases) and two classes of COMTs (caffeic acid OMTs). Antisense plants transformed with the CCoAOMT sequence alone or fused to COMT I sequence have been produced and compared to ASCOMT I plants in order to study the specific role of each OMT isoform in lignin biosynthesis, plant development and resistance to pathogens. Tobacco plants strongly inhibited in OMT activities have been selected and analyzed. Whereas antisense COMT I plants exhibited no visual phenotype, CCoAOMT repression was shown to strongly affect the development of both single and double transformants: a reduction of plant growth and the alteration of flower development were observed in the most inhibited plants. Lignin analysis performed by Klason and thioacidolysis methods, showed a decrease in the lignin quantity and changes in the lignin structure of ASCCoAOMT and ASCCoAOMT/ASCOMT I transgenics but not in ASCOMT I plants. Inhibition of COMT I in single as well as in double transformed tobacco was demonstrated to decrease S unit synthesis and to provoke the accumulation of 5-hydroxyguaiacyl lignin units. ASCCoAOMT/ASCOMT I tobacco was affected in lignin amount and composition, thus demonstrating additive effects of inhibition of both enzymes. The changes of lignin profiles and the phenotypical and molecular alterations observed in the different transgenic lines were particularly prominent at the later stages of plant development.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center