Send to

Choose Destination
See comment in PubMed Commons below
Mol Cell. 2001 Jun;7(6):1191-200.

Regulated ARE-mediated mRNA decay in Saccharomyces cerevisiae.

Author information

Department of Molecular Genetics and Microbiology, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, 08854, Piscataway, NJ, USA.


The stability of several oncogene, cytokine, and growth factor transcripts is tightly regulated by signaling pathways through an ARE (AU-rich element) present in their 3'-UTRs. We have identified a yeast transcript, TIF51A, whose stability is regulated through its AU-rich 3'-UTR. We demonstrate that the mammalian TNFalpha and c-fos AREs regulate turnover of a reporter yeast transcript in a similar manner. AREs stabilize the transcript in glucose media and function as destabilizing elements in media lacking glucose or when the Hog1p/p38 MAP kinase pathway is inhibited. Significantly, both yeast and mammalian AREs promote deadenylation-dependent decapping in the yeast system. Furthermore, the yeast ELAV homolog, Pub1p, regulates the stability mediated by the TNFalpha ARE. These results demonstrate that yeast possess a regulatable mechanism for ARE-mediated decay and suggest conservation of this turnover process from yeast to humans.

[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center