Send to

Choose Destination
See comment in PubMed Commons below
J Neurosci. 2001 Jul 1;21(13):4801-8.

A code for behavioral inhibition on the basis of color, but not motion, in ventrolateral prefrontal cortex of macaque monkey.

Author information

Department of Physiology, Juntendo University, School of Medicine, Bunkyo, Tokyo, Japan 113-8421.


To examine the neural mechanism for behavioral inhibition, we recorded single-cell activity in macaque ventrolateral prefrontal cortex, which is known to receive visual information directly from the inferotemporal cortex. In response to a moving random pattern of colored dots, monkeys had to make a go or no-go response. In the color condition, green indicated go, whereas red indicated no-go, regardless of the motion direction; in the motion condition, upward indicated go, whereas downward indicated no-go, regardless of the color. Approximately one-half of the visual cells were go/no-go differential. A majority of these cells (64/73) showed differential activity only in the color condition; they responded nondifferentially in the motion condition, although the same set of stimuli was used. We classified these cells as "go type" (n = 41) and "no-go type" (n = 23) depending on the color for which they showed a stronger response. Interestingly, in both types of cells, the differential effects were observed only for the no-go-indicating color. Compared with the nondifferential responses in the motion condition, go-type cells in the color condition showed weaker responses to the no-go-indicating color, whereas their responses to the go-indicating color were similar; in contrast, no-go type cells showed stronger responses to the no-go-indicating color, whereas their responses to the go-indicating color were similar. Both types of cells did not show any activity change during the actual execution of the go or no-go response. These results suggest that neurons in ventrolateral prefrontal cortex contribute to stimulus-response association in complex task situations by inhibiting behavioral responses on the basis of visual information from the ventral stream.

[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center