Send to

Choose Destination
Glycoconj J. 2000 Oct;17(10):681-90.

A pyrophosphate bridge links the pyruvate-containing secondary cell wall polymer of Paenibacillus alvei CCM 2051 to muramic acid.

Author information

Zentrum für Ultrastrukturforschung und Ludwig Boltzmann-Institut für Molekulare Nanotechnologie, Universität für Bodenkultur Wien, Austria.


The peptidoglycan, the secondary cell wall polymer (SCWP), and the surface layer (S-layer) glycoprotein are the major glycosylated cell wall components of Paenibacillus alvei CCM 2051. In this report, the complete structure of the SCWP, its linkage to the peptidoglycan layer, and its physicochemical properties have been investigated. From the combined evidence of chemical and structural analyses together with one- and two-dimensional nuclear magnetic resonance spectroscopy, the following structure of the SCWP-peptidoglycan complex is proposed: [(Pyr4,6)-beta-D-ManpNAc-(1-->4)-beta-D-GlcpNAc-(1-->3)]n-11-(Pyr4,6)-beta-D-ManpNAc-(1-->4)-alpha-D-GlcpNAc-(1-->O)-PO2-O-PO2-(O-->6)-MurNAc- Each disaccharide unit is substituted by 4,6-linked pyruvic acid residues. Under mild acidic conditions, up to 50% of them are lost, leaving non-substituted ManNAc residues. The anionic glycan chains constituting the SCWP are randomly linked via pyrophosphate groups to C-6 of muramic acid residues of the peptidoglycan layer. 31P NMR reveals two signals that, as a consequence of micelle formation, experience different line broadening. Therefore, their integral ratio deviates significantly from 1:1. By treatment with ethylenediaminetetraacetic acid, sodium dodecyl sulfate, and sonication immediately prior to NMR measurement, this ratio approaches unity. The reversibility of this behavior corroborates the presence of a pyrophosphate linker in this SCWP-peptidoglycan complex. In addition to the determination of the structure and linkage of the SCWP, a possible scenario for its biological function is discussed.

[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center