Send to

Choose Destination
Oncogene. 2001 May 28;20(24):3076-85.

ATP-dependent chromatin remodeling factors: nucleosome shufflers with many missions.

Author information

Marie Curie Research Institute, The Chart, Oxted, Surrey, RH8 OTL, UK.


This review addresses recent developments in the field of ATP-dependent chromatin remodeling factors. These factors use the energy of ATP hydrolysis to introduce superhelical torsion into DNA, which suggests a common mechanistic basis of action. Chromatin remodeling factors function both in transcriptional activation and repression, but they may have roles outside of transcriptional regulation such as DNA repair. A study of the nucleosome dependent ATPase ISWI in yeast illustrates the involvement of ATP-dependent chromatin remodeling in transcriptional repression by setting up inaccessible chromatin structures at promoters. However, factors such as ISWI are also involved in the restructuring of large chromatin domains and even whole chromosomes. Transcriptional regulation by ATP-dependent chromatin remodeling factors occurs in concert with histone modifying enzymes such as histone acetyltransferases and histone deacetylases: In yeast, SWI/SNF targeting is a requirement for histone acetyltransferases activity at promoters that are active at late stages of mitosis, when the chromatin is still condensed. This demonstrates that ATP-dependent remodeling factors facilitate covalent histone modifications. However, they are also regulated by histone modifications and in some circumstances they function in parallel with histone modifications towards the same goal.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Nature Publishing Group
Loading ...
Support Center