Send to

Choose Destination
Pharmacol Biochem Behav. 2001 May-Jun;69(1-2):233-7.

mu-Opioid receptor downregulation contributes to opioid tolerance in vivo.

Author information

Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, USA.


The present study examined the contribution of downregulation of mu-opioid receptors to opioid tolerance in an intact animal model. Mice were implanted subcutaneously with osmotic minipumps that infused etorphine (50-250 microg/kg/day) for 7 days. Other mice were implanted subcutaneously with a morphine pellet (25 mg) or a morphine pellet plus an osmotic minipump that infused morphine (5-40 mg/kg/day) for 7 days. Controls were implanted with an inert placebo pellet. At the end of treatment, pumps and pellets were removed, and saturation binding studies were conducted in whole brain ([3H]DAMGO) or morphine and etorphine analgesic ED(50)s were determined (tail-flick). Morphine tolerance increased linearly with the infusion dose of morphine (ED(50) shift at highest infusion dose, 4.76). No significant downregulation of mu-receptors in whole brain was observed at the highest morphine treatment dose. Etorphine produced dose-dependent downregulation of mu-opioid receptor density and tolerance (ED(50) shift at highest infusion dose, 6.97). Downregulation of mu-receptors only occurred at the higher etorphine infusion doses (> or =150 microg/kg/day). Unlike morphine tolerance, the magnitude of etorphine tolerance was a nonlinear function of the dose and increased markedly at infusion doses that produced downregulation. These results suggest that mu-opioid receptor downregulation contributes to opioid tolerance in vivo. Therefore, opioid tolerance appears to rely upon both "receptor density-dependent" and " receptor density-independent" mechanisms.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center