Send to

Choose Destination
FEBS Lett. 2001 Jun 15;499(1-2):176-81.

Differential regulation of cell migration and cell cycle progression by FAK complexes with Src, PI3K, Grb7 and Grb2 in focal contacts.

Author information

Cancer Biology Laboratories, Department of Molecular Medicine, Cornell University, Ithaca, NY 14853, USA.


Focal adhesion kinase (FAK) is a key mediator of integrin signaling, which has been implicated in the regulation of cell migration and cell cycle progression. Using chimeric molecules that fuse the focal adhesion targeting (FAT) sequence directly to several signaling molecules, we investigated the potential role of FAK recruitments of signaling molecules to focal contacts in the regulation of cell migration and cell cycle progression. We found that fusion of FAT to Src, the p85 subunit of phosphatidylinositol 3-kinase, Grb7 and Grb2 resulted in the efficient focal adhesion targeting of these signaling molecules. We showed that expression of Src-FAT, p85-FAT, or Grb7-FAT, but not Grb2-FAT, each stimulated cell migration. Interestingly, tyrosine phosphorylation of paxillin, but not p130cas, was induced by expression of Src-FAT, suggesting a potential role of paxillin in mediating stimulation of cell migration by the chimeric molecule. In contrast, targeting of Grb2, but not Src, p85, or Grb7, to focal contacts increased cell cycle progression. Biochemical analyses correlated Erk activation by Grb2-FAT with its stimulation of cell cycle progression. Together, these results suggest that at least part of the role of FAK interaction with these signaling molecules is to recruit them to focal contacts and that distinct FAK signaling complexes are involved in the regulation of cell migration vs. cell cycle progression.

[Indexed for MEDLINE]
Free full text

Publication type, MeSH terms, Substances, Grant support

Publication type

MeSH terms


Grant support

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center