Send to

Choose Destination
J Am Chem Soc. 2001 Jun 27;123(25):6108-17.

Group epitope mapping by saturation transfer difference NMR to identify segments of a ligand in direct contact with a protein receptor.

Author information

Institute of Organic Chemistry, University of Hamburg, Martin Luther King Pl. 6, 20146 Hamburg, Germany.


A protocol based on saturation transfer difference (STD) NMR spectra was developed to characterize the binding interactions at an atom level, termed group epitope mapping (GEM). As an example we chose the well-studied system of galactose binding to the 120-kDa lectin Ricinus communis agglutinin I (RCA(120)). As ligands we used methyl beta-D-galactoside and a biantennary decasaccharide. Analysis of the saturation transfer effects of methyl beta-D-galactoside showed that the H2, H3, and H4 protons are saturated to the highest degree, giving evidence of their close proximity to protons of the RCA(120) lectin. The direct interaction of the lectin with this region of the galactose is in excellent agreement with results obtained from the analysis of the binding specificities of many chemically modified galactose derivatives (Bhattacharyya, L.; Brewer, C. F. Eur. J. Biochem. 1988, 176, 207-212). This new NMR technique can identify the binding epitope of even complex ligands very quickly, which is a great improvement over time-consuming chemical modifications. Efficient GEM benefits from a relatively high off rate of the ligand and a large excess of the ligand over the receptor. Even for a ligand like the biantennary decasaccharide with micromolar binding affinity, the binding epitopes could easily be mapped to the terminal beta-D-Gal-(1-4)-beta-D-GlcNAc (beta-D-GlcNAc = N-acetyl-D-glucosamine) residues located at the nonreducing end of the two carbohydrate chains. The binding contribution of the terminal galactose residue is stronger than those of the penultimate GlcNAc residues. We could show that the GlcNAc residues bind "edge-on" with the region from H2 to H4, making contact with the protein. Analysis of STD NMR experiments performed under competitive conditions proved that the two saccharides studied bind at the same receptor site, thereby ruling out unspecific binding.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center