Send to

Choose Destination
See comment in PubMed Commons below
J Am Chem Soc. 2001 Jun 27;123(25):5947-55.

Internucleobase-interaction-directed self-assembly of nanofibers from homo- and heteroditopic 1,omega-nucleobase bolaamphiphiles.

Author information

National Institute of Materials and Chemical Research, 1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.


The complementary 1,omega-thymine, 1,omega-adenine, and 1,omega-(thymine, adenine) bolaamphiphiles, [N,N'-bis[3-(2,4-dihydroxy-5-methylpyrimidine-1-yl)propionyl]1,n-diaminoalkane [T-n-T (n = 10, 11, 12)], N, N'-bis[3-(6-aminopurine-9-yl)propionyl]1,n-diaminoalkane [A-n-A (n = 10, 11, 12)], and N-[3-(2,4-dihydroxy-5-methylpyrimidine-1-yl)propionyl], N'-[3-(6-aminopurine-9-yl)propionyl]1,n-diaminoalkane [T-n-A (n = 10, 11, 12)], respectively] have been synthesized. The spontaneous homo- and heteroassembly of these nucleobase-based bolaamphiphiles has been studied by light microscopy, energy-filtering transmission electron microscopy, FT-IR, and powder X-ray diffraction analyses. The achiral T-10-T bolaamphiphile produced in 10% ethanolic/aqueous solutions unprecedented double-helical ropes of 1-2 microm in widths and several hundred micrometers in length, whereas the complementary homologue A-10-A gave only microcrystalline solids of 1-10 microm in size. In contrast, an equimolar mixture of T-10-T and A-10-A yielded supramolecular fibers of 15-30 nm in width. (1)H NMR, CD, and UV studies of solution photoreactions of T-10-T suggested that under natural light the chiral rope formation is triggered by photodimerization of trace amounts of the thymine moieties in the T-10-T assemblies. Complementary hydrogen bond formation between the thymine-adenine heterobase pairs was found to prevent such a photoreaction and resulted in no chiral rope formation. The heteroditopic T-12-A bolaamphiphile self-assembled to form supramolecular fibers. Multilamellar organization was proposed for the homo- and heteroassemblies made of T-n-T and A-n-A.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Support Center