Send to

Choose Destination
J Exp Bot. 2001 Apr;52(357):801-9.

The high oxygen atmosphere toward the end-Cretaceous; a possible contributing factor to the K/T boundary extinctions and to the emergence of C(4) species.

Author information

Department of Plant Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.


Angiosperm plants were grown under either the present day 21 kPa O(2) atmosphere or 28 kPa, as estimated for the end-Cretaceous (100-65 MyBP). CO(2) was held at different levels, within the 24-60 Pa range, as also estimated for the same period. In C(3) Xanthium strumarium and Atriplex prostrata, leaf area and net photosynthesis per unit leaf area, were reduced by the high O(2), while the whole-plant respiration/photosynthesis ratio increased. The high O(2) effects were strongest under 24 Pa, but still significant under 60 Pa CO(2). Growth was reduced by high O(2) in these C(3) species, but not in Flaveria sp., whether C(3), C(4), or intermediary grown under light intensities <350 micromol m(-2) s(-1) PPF. Photosynthesis of C(3) Flaveria sp. was reduced by high O(2), but only at light intensities >350 micromol m(-2) s(-1) PPF. It is concluded that the high O(2) atmosphere at the end-Cretaceous would have reduced growth of at least some of the vegetation, thus adversely affecting dependent fauna. The weakened biota would have been predisposed to the consequences of volcanism and the K/T boundary bolide impact. Conversely, photosynthesis and growth of C(4) Zea mays and Atriplex halimus were little affected by high, 28 kPa, O(2). This suggests an environmental driver for the evolution of C(4) physiology.

[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center