Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2001 Aug 3;276(31):29111-5. Epub 2001 Jun 14.

Eukaryotic initiation factors 4A (eIF4A) and 4G (eIF4G) mutually interact in a 1:1 ratio in vivo.

Author information

  • 1Division of Molecular Physiology, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom.


mRNA translation in eukaryotic cells involves a set of proteins termed translation initiation factors (eIFs), several of which are involved in the binding of ribosomes to mRNA. These include eIF4G, a modular scaffolding protein, and eIF4A, an RNA helicase, of which two closely related forms are known in mammals, eIF4A(I) and eIF4A(II). In mammals, eIF4G possesses two independent sites for binding eIF4A, whereas in other eukaryotes (e.g. yeast) only one site appears to be present, thus raising the issue of the stoichiometry of eIF4G.eIF4A complexes in different eukaryotes. We show that in human embryonic kidney cells eIF4G is associated with eIF4A(I) or eIF4A(II) but not with both simultaneously, suggesting a stoichiometry of 1:1 rather than 1:2. To confirm this, eIF4A(I) or eIF4A(II) was expressed in a tagged form in these cells, and complexes with eIF4G were again isolated. Complexes containing tagged eIF4A(I) or eIF4A(II) contained no endogenous eIF4A, supporting the notion that eIF4G binds only one molecule of eIF4A. Each binding site in eIF4G can bind either eIF4A(I) or eIF4A(II). The data imply that the second binding site in mammalian eIF4A does not bind an additional eIF4A molecule and that initiation factor complexes in different eukaryotes contain one eIF4A per eIF4G.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center