Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2001 Aug 24;276(34):31945-52. Epub 2001 Jun 6.

The death effector domain-associated factor plays distinct regulatory roles in the nucleus and cytoplasm.

Author information

  • 1Laboratory of Immunology, NIAID, National Institutes of Health, Bethesda, Maryland 20892, USA.


Homophilic interactions of death effector domains (DEDs) are crucial for the signaling pathways of death receptor-mediated apoptosis. The machinery that regulates proper oligomerization and autoactivation of procaspase-8 and/or procaspase-10 during T lymphocyte activation determines whether the cells will undergo caspase-mediated apoptosis or proliferation. We screened a yeast two-hybrid library by using the DEDs contained in the prodomains of procaspase-8 and procaspase-10 and isolated a DED-associated factor (DEDAF) that interacts with several DED-containing proteins but does not itself contain a DED. DEDAF is highly conserved between human and mouse (98% amino acid identity) and is homologous to a nuclear regulatory protein YAF-2. DEDAF is expressed at the highest levels in lymphoid tissues and placenta. DEDAF interacts with FADD, procaspase-8, and procaspase-10 in the cytosol as well as with the DED-containing DNA-binding protein (DEDD) in the nucleus. At the cell membrane, DEDAF augmented the formation of CD95-FADD-caspase-8 complexes and enhanced death receptor- as well as DED-mediated apoptosis. In the nucleus, DEDAF caused the DEDD protein to relocalize from subnuclear structures to a diffuse distribution in the nucleoplasm. Our data therefore suggest that DEDAF may be involved in the regulation of both cytoplasmic and nuclear events of apoptosis.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center