Format

Send to

Choose Destination
Environ Sci Technol. 2001 May 15;35(10):2114-21.

Solar oxidation and removal of arsenic at circumneutral pH in iron containing waters.

Author information

1
Swiss Federal Institute for Environmental Science and Technology (EAWAG), Postfach 611, Uberlandstrasse 133, CH-8600 Dübendorf, Switzerland. hug@eawag.ch

Abstract

An estimated 30-50 million people in Bangladesh consume groundwater with arsenic contents far above accepted limits. A better understanding of arsenic redox kinetics and simple water treatment procedures are urgently needed. We have studied thermal and photochemical As(III) oxidation in the laboratory, on a time scale of hours, in water containing 500 micrograms/L As(III), 0.06-5 mg/L Fe(II,III), and 4-6 mM bicarbonate at pH 6.5-8.0. As(V) was measured colorimetrically, and As(III) and As(tot) were measured by As(III)/As(tot)-specific hydride-generation AAS. Dissolved oxygen and micromolar hydrogen peroxide did not oxidize As(III) on a time scale of hours. As(III) was partly oxidized in the dark by addition of Fe(II) to aerated water, presumably by reactive intermediates formed in the reduction of oxygen by Fe(II). In solutions containing 0.06-5 mg/L Fe(II,III), over 90% of As(III) could be oxidized photochemically within 2-3 h by illumination with 90 W/m2 UV-A light. Citrate, by forming Fe(III) citrate complexes that are photolyzed with high quantum yields, strongly accelerated As(III) oxidation. The photoproduct of citrate (3-oxoglutaric acid) induced rapid flocculation and precipitation of Fe(III). In laboratory tests, 80-90% of total arsenic was removed after addition of 50 microM citrate or 100-200 microL (4-8 drops) of lemon juice/L, illumination for 2-3 h, and precipitation. The same procedure was able to remove 45-78% of total arsenic in first field trials in Bangladesh.

PMID:
11393995
DOI:
10.1021/es001551s
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center