Format

Send to

Choose Destination
J Neurochem. 2001 Jun;77(5):1418-21.

Brain ischemia and reperfusion activates the eukaryotic initiation factor 2alpha kinase, PERK.

Author information

1
Department of Emergency Medicine, Wayne State University, Detroit, Michigan 48201, USA.

Abstract

Reperfusion after global brain ischemia results initially in a widespread suppression of protein synthesis in neurons, which persists in vulnerable neurons, that is caused by the inhibition of translation initiation as a result of the phosphorylation of the alpha-subunit of eukaryotic initiation factor 2 (eIF2alpha). To identify kinases responsible for eIF2alpha phosphorylation [eIF2alpha(P)] during brain reperfusion, we induced ischemia by bilateral carotid artery occlusion followed by post-ischemic assessment of brain eIF2alpha(P) in mice with homozygous functional knockouts in the genes encoding the heme-regulated eIF2alpha kinase (HRI), or the amino acid-regulated eIF2alpha kinase (GCN2). A 10-fold increase in eIF2alpha(P) was observed in reperfused wild-type mice and in the HRI-/- or GCN2-/- mice. However, in all reperfused groups, the RNA-dependent protein kinase (PKR)-like endoplasmic reticulum eIF2alpha kinase (PERK) exhibited an isoform mobility shift on SDS-PAGE, consistent with the activation of the kinase. These data indicate that neither HRI nor GCN2 are required for the large increase in post-ischemic brain eIF2alpha(P), and in conjunction with our previous report that eIF2alpha(P) is produced in the brain of reperfused PKR-/- mice, provides evidence that PERK is the kinase responsible for eIF2alpha phosphorylation in the early post-ischemic brain.

PMID:
11389192
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center