Send to

Choose Destination
See comment in PubMed Commons below
Cancer Biother Radiopharm. 2001 Apr;16(2):133-46.

In vivo evaluation of bismuth-labeled monoclonal antibody comparing DTPA-derived bifunctional chelates.

Author information

Laboratory of Tumor Immunology and Biology, National Cancer Institute, The National Institutes of Health, 9000 Rockville Pike, Bld. 10 Room B3B69, Bethesda, MD 20892, USA.


Among the radionuclides considered for radioimmunotherapy, alpha-emitters such as the bismuth isotopes, 212Bi and 213Bi, are of particular interest. The macrocyclic ligand, DOTA, has been shown to form stable complexes with bismuth isotopes. The kinetics of the complexation of bismuth with the DOTA chelate, however, are slow and impractical for use with 212Bi and 213Bi that have half-lives of 60.6 and 45.6 min. The study described herein compares six DTPA derived bifunctional chelates with the goal of identifying an alternative to the DOTA ligand for radiolabeling with bismuth. Radioimmunoconjugates comprised of MAb B72.3, each of the six DTPA chelates, and radiolabeled with 206Bi, which facilitated the evaluation due to its readily detectable gamma-emission. In vitro studies showed that each of the radioimmunoconjugates retained immunoreactivity that was comparable to its 125I-labeled counterpart. The 206Bi- and 125I-labeled immunoconjugates were then co-injected i.p. into normal athymic mice. Injection of Afree@ 206Bi demonstrated that the kidneys were the critical organ to evaluate for retention of bismuth in the chelate complex. Major differences were identified among the six preparations. The CHX-A and -B immunoconjugates were found to have 1) the lowest %ID/gm in the kidney; 2) a level of 206Bi in the kidney that was comparable to that of 125I-B72.3; and 3) no significant uptake of 206Bi evident in other organs such as bone, lung and spleen. The results described herein suggest that either of the cyclohexyl derivatives of DTPA may be suitable candidates for the labeling of immunoconjugates with alpha-emitting bismuth isotopes for radioimmunotherapeutic applications.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Mary Ann Liebert, Inc.
    Loading ...
    Support Center