Format

Send to

Choose Destination
J Dairy Sci. 2001 May;84(5):1149-55.

The effect of Lactobacillus buchneri and other additives on the fermentation and aerobic stability of barley silage.

Author information

1
Delaware Agricultural Experiment Station, Department of Animal & Food Science, College of Agriculture and Natural Resources, University of Delaware, Newark 19717-1303, USA. lkung@udel.edu

Abstract

Whole-plant barley (39.4% dry matter) was treated with various chemical and biological additives to assess their effects on silage fermentation and aerobic stability. Treatments were untreated forage, forage treated with several amounts of Lactobacillus buchneri and enzymes (L. buchneri at 1 x 10(5), 5 x 10(5), and 1 x 10(6) cfu/g of fresh forage), forage treated with an inoculant containing (Lactobacillus plantarum, Pediococcus pentosaceus, Propionibacterium freudenreichii, and enzymes), or forage treated with a buffered propionic acid-based additive (0.2% of fresh weight). Sixty-nine d after ensiling, silages treated with L. buchneri and enzymes had lower pH, but had higher concentrations of acetic and propionic acids and higher concentrations of ethanol when compared with untreated silage. Silage treated with the multistrain inoculant containing L. plantarum had lower pH and higher concentrations of lactic acid, but lower concentrations of ammonia-N, neutral detergent fiber, and acid detergent fiber than did untreated silage. The addition of the buffered propionic acid additive resulted in silage with higher concentrations of lactic and acetic acid compared with untreated silage. Numbers of yeasts in all silages were low at silo opening (less than 3.0 log cfu/g) and were numerically the lowest in silages treated with L. buchneri but only treatment with the intermediate and high level of L. buchneri improved the aerobic stability of silage. Because of the altered fermentation pattern, inoculation with L. buchneri, when applied at equal to or more than 5 x 10(5) cfu/g, and enzymes improved the aerobic stability of barley silage.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center