Send to

Choose Destination
See comment in PubMed Commons below
Plant Cell Physiol. 2001 May;42(5):499-507.

EMF genes interact with late-flowering genes in regulating floral initiation genes during shoot development in Arabidopsis thaliana.

Author information

Graduate Institute of Agricultural Biotechnology, National Chung Hsing University, Taichung, Taiwan 40227, ROC.


To investigate the mechanisms regulating the initiation of floral development in Arabidopsis, a construct containing beta-glucuronidase (GUS) gene driven by APETALA1 promoter (AP1::GUS) was introduced into emf fwa and emf ft double mutants. GUS activity was strongly detected on shoot meristem of emf1-1 single mutants harboring AP1::GUS construct just 5 d after germination. By contrast, GUS activity was undetectable on emf1-1 fwa-1, emf1-1 ft-1, emf2-1 fwa-1, emf2-3 fwa-1 and emf2-3 ft-1 double mutants harboring AP1::GUS construct 10 d after germination. GUS activity was only weakly detected on the apical meristem of 20-day-old emf1-1 fwa-1 and emf2-1 fwa-1 seedlings. During this time, only sessile leaves were produced. Further analysis indicated that AP1 was strongly expressed in 10-day-old emf1-1 and emf2-1 single mutants. Its expression was significantly reduced in all emf1-1 or emf2-1 late-flowering double mutants tested. Similar to AP1, the expression of LEAFY (LFY) was also high in emf1-1 and emf2-1 single mutants and reduced in emf1-1 or emf2-1 late-flowering double mutants. Our results indicate that the precocious expression of AP1 and LFY is dependent not only on the low EMF and FWA activities but also on the expression of most of the late-flowering genes such as FT, FCA, FE, CO and GI. These data also reveal that most late-flowering genes may function downstream of EMF or in pathways distinct from EMF to activate genes specified floral meristem identity during shoot maturation in Arabidopsis.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Loading ...
    Support Center