Format

Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2001 Aug 3;276(31):28819-23. Epub 2001 May 29.

Purification, characterization, and cDNA cloning of lipoate-activating enzyme from bovine liver.

Author information

1
Institute for Enzyme Research, the University of Tokushima, Tokushima 770-8503, Japan.

Abstract

In mammals, lipoate-activating enzyme (LAE) catalyzes the activation of lipoate to lipoyl-nucleoside monophosphate. The lipoyl moiety is then transferred to the specific lysine residue of lipoate-dependent enzymes by the action of lipoyltransferase. We purified LAE from bovine liver mitochondria to apparent homogeneity. LAE activated lipoate with GTP at a 1000-fold higher rate than with ATP. The reaction absolutely required lipoate, GTP, and Mg(2+) ion, and the reaction product was lipoyl-GMP. LAE activated both (R)- and (S)-lipoate to the respective lipoyl-GMP, although a preference for (R)-lipoate was observed. Similarly, lipoyltransferase equally transferred both the (R)- and (S)-lipoyl moieties from the respectively activated lipoates to apoH-protein. Interestingly, however, only H-protein carrying (R)-lipoate was active in the glycine cleavage reaction. cDNA clones encoding a precursor LAE with a mitochondrial presequence were isolated. The predicted amino acid sequence of LAE is identical with that of xenobiotic-metabolizing/medium-chain fatty acid:CoA ligase-III, but an amino acid substitution due to a single nucleotide polymorphism was found. These results indicate that the medium-chain acyl-CoA synthetase in mitochondria has a novel function, the activation of lipoate with GTP.

PMID:
11382754
DOI:
10.1074/jbc.M101748200
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center