Format

Send to

Choose Destination
Neuropharmacology. 2001 Jun;40(7):879-87.

Pharmacological modulation of SK3 channels.

Author information

1
Division of Cellular and Molecular Physiology, Department of Medical Physiology, The Panum Institute, University of Copenhagen, 3 Blegdamsvej, DK-2200 N, Copenhagen, Denmark. mgrunnet@mfi.ku.dk

Abstract

Small-conductance, calcium-activated K+ channels (SK channels) are voltage-insensitive channels that have been identified molecularly within the last few years. As SK channels play a fundamental role in most excitable cells and participate in afterhyperpolarization (AHP) and spike-frequency adaptation, pharmacological modulation of SK channels may be of significant clinical importance. Here we report the functional expression of SK3 in HEK293 and demonstrate a broad pharmacological profile for these channels. Brain slice studies commonly employ 4-aminopyridine (4-AP) to block voltage-dependent K+ channels or a methyl derivative of bicuculline, a blocker of gamma-aminobutyric acid (GABA)-gated Cl- channels, in order to investigate the role of various synapses in specialized neural networks. However, in this study both 4-AP and bicuculline are shown to inhibit SK3 channels (IC50 values of 512 microM and 6 microM, respectively) at concentrations lower than those used for brain slice recordings. Riluzole, a potent neuroprotective drug with anti-ischemic, anticonvulsant and sedative effects currently used in the treatment of amyotrophic lateral sclerosis, activates SK3 channels at concentrations of 3 microM and above. Amitriptyline, a tricyclic antidepressive widely used clinically, inhibits SK3 channels with an IC50 of 39.1 +/- 10 microM (n=6).

PMID:
11378158
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center