Quartet-based phylogenetic inference: improvements and limits

Mol Biol Evol. 2001 Jun;18(6):1103-16. doi: 10.1093/oxfordjournals.molbev.a003881.

Abstract

We analyze the performance of quartet methods in phylogenetic reconstruction. These methods first compute four-taxon trees (4-trees) and then use a combinatorial algorithm to infer a phylogeny that respects the inferred 4-trees as much as possible. Quartet puzzling (QP) is one of the few methods able to take weighting of the 4-trees, which is inferred by maximum likelihood, into account. QP seems to be widely used. We present weight optimization (WO), a new algorithm which is also based on weighted 4-trees. WO is faster and offers better theoretical guarantees than QP. Moreover, computer simulations indicate that the topological accuracy of WO is less dependent on the shape of the correct tree. However, although the performance of WO is better overall than that of QP, it is still less efficient than traditional phylogenetic reconstruction approaches based on pairwise evolutionary distances or maximum likelihood. This is likely related to long-branch attraction, a phenomenon to which quartet methods are very sensitive, and to inappropriate use of the initial results (weights) obtained by maximum likelihood for every quartet.

Publication types

  • Comparative Study

MeSH terms

  • Algorithms*
  • Models, Genetic
  • Phylogeny*