Send to

Choose Destination
Curr Biol. 2001 May 1;11(9):662-70.

Gene dosage-dependent functions for phosphotyrosine-Grb2 signaling during mammalian tissue morphogenesis.

Author information

Programme in Molecular Biology and Cancer, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Ontario, M5G 1X5, Toronto, Canada.



The mammalian Grb2 adaptor protein binds pTyr-X-Asn motifs through its SH2 domain, and engages downstream targets such as Sos1 and Gab1 through its SH3 domains. Grb2 thereby couples receptor tyrosine kinases to the Ras-MAP kinase pathway, and potentially to phosphatidylinositol (PI) 3'-kinase. By creating a null (Delta) allele of mouse Grb2, we have shown that Grb2 is required for endoderm differentiation at embryonic day 4.0.


Grb2 likely has multiple embryonic and postnatal functions. To address this issue, a hypomorphic mutation, first characterized in the Caenorhabditis elegans Grb2 ortholog Sem-5, was engineered into the mouse Grb2 gene. This mutation (E89K) reduces phosphotyrosine binding by the SH2 domain. Embryos that are compound heterozygous for the null and hypomorphic alleles exhibit defects in placental morphogenesis and in the survival of a subset of migrating neural crest cells required for branchial arch formation. Furthermore, animals homozygous for the hypomorphic mutation die perinatally because of clefting of the palate, a branchial arch-derived structure. Analysis of E89K/Delta Grb2 mutant fibroblasts revealed a marked defect in ERK/MAP kinase activation and Gab1 tyrosine phosphorylation following growth factor stimulation.


We have created an allelic series within mouse Grb2, which has revealed distinct functions for phosphotyrosine-Grb2 signaling in tissue morphogenesis and cell viability necessary for mammalian development. The placental defects in E89K/Delta mutant embryos are reminiscent of those seen in receptor tyrosine kinase-, Sos1-, and Gab1-deficient embryos, consistent with the finding that endogenous Grb2 is required for efficient RTK signaling to the Ras-MAP kinase and Gab1 pathways.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center