Format

Send to

Choose Destination
Biochem J. 2001 Jun 1;356(Pt 2):473-80.

Distinct roles for extracellular-signal-regulated protein kinase (ERK) mitogen-activated protein kinases and phosphatidylinositol 3-kinase in the regulation of Mcl-1 synthesis.

Author information

1
Department of Medicine, University of British Columbia and Vancouver Hospital, Jack Bell Research Centre, 2660 Oak St. Vancouver, BC, Canada V6H 3Z6.

Abstract

Alterations in the expression of various Bcl-2 family members may act as one means by which a cell's survival may be regulated. The mechanism by which cytokines regulate expression of Bcl-2 family members was examined in the haemopoietic cell line TF-1. Cytokine-induced Mcl-1 protein expression was shown to be controlled through a pathway dependent upon phosphatidylinositol 3-kinase (PI 3-kinase). The cytokine-induced increase in mRNA transcription was not dependent upon PI 3-kinase, thus dissociating the immediate-early transcription factors responsible for Mcl-1 transcription from the PI 3-kinase signalling pathway. In contrast, Mcl-1 mRNA levels were dependent upon MEK [mitogen-activated protein kinase (MAPK)/extracellular-signal-regulated protein kinase kinase] activation, suggesting a role for the Ras/MEK/MAPK pathway in Mcl-1 transcription. Activation of PI 3-kinase was shown to be necessary to stimulate Mcl-1 protein translation. This was not due to any effect on prolonging the half-life of the protein. Finally, the lipid second messenger ceramide was shown to cause a reduction in Mcl-1 protein translation, probably via its ability to inhibit protein kinase B activation, providing further clues regarding the death-inducing effect of this lipid.

PMID:
11368774
PMCID:
PMC1221858
DOI:
10.1042/0264-6021:3560473
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for HighWire Icon for PubMed Central
Loading ...
Support Center