Format

Send to

Choose Destination
See comment in PubMed Commons below
Biochemistry. 2001 May 22;40(20):5983-91.

In vitro assembly of tau protein: mapping the regions involved in filament formation.

Author information

  • 1Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid, 28049-Madrid, Spain.

Abstract

Unraveling the mechanism of self-assembly of the protein tau into paired helical filaments (PHFs) is a crucial step toward the understanding of Alzheimer's and other neuropathological diseases at the molecular level. In an effort to map the role of different regions of tau in the mechanism of self-assembly, we have studied the polymerization ability of different tau fragments using an in vitro assay. Our results indicate that the N-terminal domain interferes with tau's ability to polymerize in vitro. The effect seems to be size dependent. Particularly, an isoform of tau from the peripheral nervous system, which has a much larger N-terminal domain, was found unable to form filaments in our in vitro assay. This finding can explain why in Alzheimer's patients PHFs only accumulate in the neurons from the central nervous system. We also report that a short segment of tau located in the third microtubule binding repeat (residues 317 to 335, peptide 1/2R) is probably the minimal segment of that region able to grow into filaments in vitro and in the presence of heparin. In contrast with whole peptide 1/2R, peptides corresponding to either the N-terminal or C-terminal halves of this segment were unable to form filaments. Finally, our polymerization studies of peptides from the C-terminal domain reveal a short sequence spanning residues 391 to 407 that grows into filaments in vitro. This tau segment forms filaments regardless of whether is incubated with heparin. Moreover, such filaments differ in diameter and morphology, suggesting a different mechanism of self-assembly.

PMID:
11352733
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Support Center