Format

Send to

Choose Destination
Plant Mol Biol. 2001 Mar;45(4):387-98.

Expression of a class 1 knotted1-like homeobox gene is down-regulated in pea compound leaf primordia.

Author information

1
Department of Applied Genetics, John Innes Centre, Norwich, UK. hofer@bbsrc.ac.uk

Abstract

Differences in knotted1-like (knox) gene expression may account for some of the diversity of leaf forms seen in nature. Class 1 knox genes are expressed in the compound leaf primordia of tomato but not in the simple leaf primordia of a range of species examined so far. In order to test the hypothesis that all compound leaves differ from simple leaves in this way, we isolated a class 1 knox cDNA from pea, Pskn1 (Pisum sativum knotted1) and examined its expression pattern. The encoded homeodomain of Pskn1 shares 88% identical residues with KNOTTED1 from maize and an adjacent ELK domain is present. The protein sequence of PSKN1 is 69% identical to TKN2, its nearest related sequence in tomato. Unlike TKn2, Pskn1 was not expressed in newly initiated compound leaves. The expression pattern of Pskn1 resembled those of other class 1 knox genes described in maize and Arabidopsis. Transcripts were detected in the shoot apical meristem and developing vasculature of the vegetative shoot, but expression was not detected in newly initiated and developing compound leaf primordia. The same pattern of expression was observed in the afila mutant, which is characterised by highly ramified compound leaves. Our results suggest that tomato and pea use different developmental processes in the generation of their compound leaves.

PMID:
11352458
[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center