Send to

Choose Destination
Environ Pollut. 2001;113(1):19-26.

A microbial biosensor to predict bioavailable nickel in soil and its transfer to plants.

Author information

Environmental Technology Expertise Centre, Flemish Institute of Technological Research (Vito), Boeretang 200, B-2400 Mol, Belgium.


Ralstonia eutropha strain AE2515 was constructed and optimised to serve as a whole-cell biosensor for the detection of bioavailable concentrations of Ni2+ and Co2+ in soil samples. Strain AE2515 is a Ralstonia eutropha CH34 derivative containing pMOL1550, in which the cnrYXH regulatory genes are transcriptionally fused to the bioluminescent luxCDABE reporter system. Strain AE2515 was standardised for its specific responses to Co2+ and Ni2+. The detection limits for AE2515 were 0.1 microM Ni2+ and 9 microM Co2+, respectively. The signal to noise (S/N) bioluminescence response and the metal cation concentration could be linearly correlated: for Ni2+ this was applicable within the range 0.1-60 microM, and between 9 and 400 microM for Co2+. The AE2515 biosensor strain was found to be highly selective for nickel and cobalt: no induction was observed with Zn(II), Cd(II), Mn(II), Cu(III) and Cr(VI). In mixed metal solutions, the bioluminescent response always corresponded to the nickel concentrations. Only in the presence of high concentrations of Co2+ (2 mM), the sensitivity to nickel was reduced due to metal toxicity. AE2515 was used to quantify the metal bioavailability in various nickel-enriched soils, which had been treated with additives for in situ metal immobilisation. The data obtained with strain AE2515 confirmed that the bioavailability of nickel was greatly reduced following the treatment of the soils with the additives beringite and steel shots. Furthermore, the data were found to correlate linearly with those on the biological accumulation of Ni2+ in specific parts of important agricultural crops, such as maize and potato. Therefore, the test can be used to assess the potential transfer of nickel to organisms of higher trophic levels, in this case maize and potato plants grown on nickel-enriched soils, and the potential risk of transfer of these elements to the food chain.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center