Send to

Choose Destination
Inorg Chem. 2001 May 21;40(11):2509-19.

Inner-sphere reorganization energy of iron-sulfur clusters studied with theoretical methods.

Author information

Department of Theoretical Chemistry, Lund University, Chemical Centre, P.O. Box 124, S-221 00 Lund, Sweden.


Models of several types of iron-sulfur clusters (e.g., Fe(4)S(4)(SCH(3))(4)(2-/3-/4-)) have been studied with the density functional B3LYP method and medium-sized basis sets. In a vacuum, the inner-sphere reorganization energies are 40, 76, 40, 62, 43, and 42 kJ/mol for the rubredoxin, [2Fe-2S] ferredoxin, Rieske, [4Fe-4S] ferredoxin, high-potential iron protein, and desulfoferrodoxin models, respectively. The first two types of clusters were also studied in the protein, where the reorganization energy was approximately halved. This change is caused by the numerous NH.S(Cys) hydrogen bonds to the negatively charged iron-sulfur cluster, giving rise to a polar local environment. The reorganization energy of the iron-sulfur clusters is low because the iron ions retain the same geometry and coordination number in both oxidation states. Cysteine ligands give approximately the same reorganization energy as imidazole, but they have the advantage of stabilizing a lower coordination number and giving more covalent bonds and therefore more effective electron-transfer paths.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center