Format

Send to

Choose Destination
See comment in PubMed Commons below
RNA. 2001 May;7(5):731-40.

Hierarchical assembly of the Alu domain of the mammalian signal recognition particle.

Author information

1
European Molecular Biology Laboratory, Grenoble Outstation, France.

Abstract

The mammalian signal recognition particle (SRP) catalytically promotes cotranslational translocation of signal sequence containing proteins across the endoplasmic reticulum membrane. While the S-domain of SRP binds the N-terminal signal sequence on the nascent polypeptide, the Alu domain of SRP temporarily interferes with the ribosomal elongation cycle until the translocation pore in the membrane is correctly engaged. Here we present biochemical and biophysical evidence for a hierarchical assembly pathway of the SRP Alu domain. The proteins SRP9 and SRP14 first heterodimerize and then initially bind to the Alu RNA 5' domain. This creates the binding site for the Alu RNA 3' domain. Alu RNA then undergoes a large conformational change with the flexibly linked 3' domain folding back by 180 degrees onto the 5' domain complex to form the final compact Alu ribonucleoprotein particle (Alu RNP). We discuss the possible mechanistic consequences of the likely reversibility of this final step with reference to translational regulation by the SRP Alu domain and with reference to the structurally similar Alu RNP retroposition intermediates derived from Alu elements in genomic DNA.

PMID:
11350037
PMCID:
PMC1370125
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center