Format

Send to

Choose Destination
See comment in PubMed Commons below
Genetics. 2001 May;158(1):265-78.

Partitioning of N-ethylmaleimide-sensitive fusion (NSF) protein function in Drosophila melanogaster: dNSF1 is required in the nervous system, and dNSF2 is required in mesoderm.

Author information

1
Department of Genetics, University of Washington, Seattle, WA 98195, USA.

Abstract

The N-ethylmaleimide-sensitive fusion protein (NSF) promotes the fusion of secretory vesicles with target membranes in both regulated and constitutive secretion. While it is thought that a single NSF may perform this function in many eukaryotes, previous work has shown that the Drosophila genome contains two distinct NSF genes, dNSF1 and dNSF2, raising the possibility that each plays a specific secretory role. To explore this possibility, we generated mutations in the dNSF2 gene and used these and novel dNSF1 loss-of-function mutations to analyze the temporal and spatial requirements and the degree of functional redundancy between dNSF1 and dNSF2. Results of this analysis indicate that dNSF1 function is required in the nervous system beginning at the adult stage of development and that dNSF2 function is required in mesoderm beginning at the first instar larval stage of development. Additional evidence suggests that dNSF1 and dNSF2 may play redundant roles during embryonic development and in the larval nervous system. Ectopic expression studies demonstrate that the dNSF1 and dNSF2 gene products can functionally substitute for one another. These results indicate that the Drosophila NSF proteins exhibit similar functional properties, but have evolved distinct tissue-specific roles.

PMID:
11333235
PMCID:
PMC1461639
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center